讲座信息

当前位置: 新闻网首页 >> 讲座信息 >> 正文

【理学院】On Numerators of Bernoulli Numbers

发布时间:2019-11-19 作者与来源:理学院  浏览次数:

 目 On Numerators of Bernoulli Numbers
 间2019年11月21日(周下午 1430-1530
 点18-918
报告人Mehmet Cenkci,教授
 要The Bernoulli numbers, which appear in many different areas of mathematics such as nul-merical analysis (e.g. the Euler -Maclaurin Summation Formula), mathematical analysis (e.g.trivial zeros of the Riemann zeta function), combinatorics (e.g. connections with combinatorialnumbers like Stirling numbers), and analytic number theory (e.g. nonvanishing of the DirichletL-function), satisfy some arithmetical properties. Being rational numbers, their denominatorsare completely determined by the von Staudt-Clausen Theorem. However, such a complete

description of their numerators is not known, although many fundamental results concerningFermat's Last Theorem rest on arithmetical properties of the numerators. We shall talk aboutsome arithmetical properties of numerators of Bernoulli numbers, in particular, about K ummercongruences, Voronoi congruences, and the results due to Frobenious, Ramanujan, and Carlitz.

报告人简介Mehmet Cenkci先后于2001年和2007年在阿卡德尼兹大学获得硕士和博士学位,现任阿卡德尼兹大学教授主要研究解析数论、特殊和生成函数等方向。